
A plane of weakly coupled Heisenberg chains: theoretical arguments and numerical

calculations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 7313

(http://iopscience.iop.org/0305-4470/27/22/009)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 22:26

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/22
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A hlath. Gen. 27 (1994) 7313-7325 Printed in the UK 

A plane of weakly coupled Heisenberg chains: theoretical 
arguments and numerical calculations 

Ian Affleckt, Martin P Gelfandt and Rajiv R P Sin&§ 
t Canadian Institute for Advanced Research and Physics Depmen t .  University of British 
Columbia, Vancouver, British Columbia, Canada V6T 1Z1 
i Department of Physics, Colorado State University. Fort Collins, CO 80523, USA 
5 Department of Physics, University of California, Davis. CA 95616, USA 

Received 26 July 1994 

Abstracr The S = f ,  "west-neighbour. quantum Heisenberg antiferromagnet on the square 
lattice with spatially anisotropic couplings is reconsidered, with particular attention to the 
following question: ar T = 0, does NBel order develop at infinitesimal interchain coupling, or is 
there a non-zero critical coupling? A heuristic renormalization-group argument is presented 
which suggests that previous theoretical answers to this question are incorrect or at least 
incomplete, and thar the answer is not universal but rather depends on the microscopic details 
of the model under consideration. Numerical investigations of the nearest-neighbour model are 
canied out v i z  zero-temperature series expansions about Ising and dimer Hamiltonians. The 
results are entirely consistent with a vanishing critical interchain coupling ratio Rc; if Rc is 
finite, it is unlikely to substantially exceed 0.02. 

1. Introduction 

Lately there has been considerable interest in one- to two-dimensional crossover in Luttinger 
liquids. The motivation is largely the interest in possible non-Fermi liquid behaviour in two- 
dimensional models for high-T, superconductors [I]. While much of this work has focused 
on the Hubbard or t-J model, a simpler case to understand is that of the spatially anisotropic 
square-lattice spin-$ Heisenberg antiferromagnet 

H = J,S; * Sj + JySi * Sj 
7,-r,=+ R-r, =ey 

(and see figure 1) with 0 < J y  << J x .  The essential question is whether NCel order sets in 
for infinitesimal 

R 3 J y / J x  (1.2) 

or whether there is a finite minimum coupling ratio necessary for long-range order (LRO). 
A subsidiary question is the nature of the magnetically disordered phase at small R, if the 
latter scenario holds true. While various analytical and numerical investigations of this 
question have appeared in the literature [24], it appears to be far from settled. 

The purpose of this paper is twofold. In section 2 we review previous analytic arguments 
for or against the existence of a finite minimum ratio. We then discuss a renormalization- 
group framework within which previous arguments appear to be incorrect or incomplete. 
This approach indicates that the behaviour is not universal and that for any particular model 
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the question may only be answered by numerical investigation, Therefore in section 3 we 
present such a numerical investigation of the Hamiltonian (1.1) based on a high-order series 
expansion about both the N6el and dimer phases. That analysis seems to indicate that if 
there is a critical ratio it is rather small. 

2. Theoretical arguments 

2.1. Spin-wave theory 

Spin-wave theory plays an important role in our understanding of antiferromagnetism. A 
systematic 1/S expansion (where S is the spin magnitude) is generally believed to give, 
at low orders, a fairly accurate estimate of the sublattice magnetization on various lattices. 
In particular, it correctly predicts the absence of long-range order at T = 0 for a one- 
dimensional antiferromagnet. This effect can be seen from the leading-order correction to 
the sublattice magnetization. For the anisotropic ZD model of (I.l), we have 

- 01 d’k 1 

where 
J, cos kx + J, cos k ,  

Jx + J y  
Yk = 

and the k integral runs over the Brillouin zone, lkil c R. For J y  = 0, the integrand is 
independent of k ,  and the integral has logarithmic divergences at kx = 0 and R indicating 
the absence of N6el order. For finite J,  the integral is finite and for small R we obtain: 

(2.3) 

If we took as a criterion for the stability of the Niel phase that the O(1) correction should be 
smaller than the leading O(S) term, then we would conclude that NBel order breaks down 
at 

1 
(S:)  ~3 f S +  -In R . Ll  
R~ = e-2nS. (2.4) 

For S z 4, numerical evaluation of the integral in (2.1) gives Re M 0.033 67 [2]. 

2.2. Chain mean-feld theory 

A standard method for treating dimensional crossover problems of this type is to use the 
known behaviour of the antiferromagnetic susceptibility for the one-dimensional system and 
to treat the couplings in the second dimension in mean-field theory [5 ] .  (We refer to this as 
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‘chain’ mean-field theory to distinguish it from another mean-field theory to be discussed 
later.) The Hamiltonian of (1.1) is replaced by the Following mean-field Hamiltonian For 
each chain: 

We now calculate (9) using this Hamiltonian and demand self-consistency. The mean-field 
critical point is then determined by 

1 = Z R X I ( T N )  (2.6) 
where X I  is the zero-frequency antiferromagnetic susceptibility for the one-dimensional 
chain with J, = 1. For a half-integer spin Heisenberg antiferromagnet, ,yl(T) diverges as 
1/T, as T + 0. This argument then predicts a finite Nee1 temperature 

TN % Jy . (2.7) 
No matter how small J,, the ground state is always ordered. On the other hand, for integer 
S, ,y,(O) has a finite value of order I/A,  the Haldane gap. Hence this argument predicts 
a disordered ground state for integer S and R 4 R, with R, m A. This result is readily 
generalized to d-dimensional systems. The factor of 2 in (2.6) is simply replaced by the 
number of nearest-neighbour chains. Indeed, it presumably becomes exact in the limit 
d -+ 00. It has an obvious problem For d = 2 where the Mermin-Wagner theorem tells us 
that N&I order should be impossible at any finite temperature. Nonetheless, we might be 
tempted to believe the conclusion that it does occur at T = 0. A more sensible application 
of this mean-field theory for d = 2 is to the case of a staggered intra-chain coupling at 
T = 0 (see section 3.2). Equation (2.6) then becomes 

1 = ~ R ~ P ~ x I ( & F ) .  (2.8) 
Here A is the ratio of coupling on alternate links, and ).EhlF is its critical value within 
the chain mean-field theory Since a staggered interaction in one dimension has scaling 
dimension $, we conclude that XI@) a (1 - h)-’P (up to log corrections). Now 1 - h 
plays a role roughly analogous to a finite temperature; as h + 1, the mean-field theory 
predicts that NCel order sets in at 1 - AtMF c( R’/*. 

2.3. Renormalization-group argumenl 

Consider a system of quantum chains weakly coupled to each other at T = 0. They may 
be OF XY or Heisenberg symmetry. Alternatively, consider a system of classical spins 
consisting of planes which are weakly coupled to each other, at finite T .  In either case 
(ignoring topological terms, for the moment), we may represent the system at long length 
scales by a three-dimensional nonlinear u-model, with action or Hamiltonian 

S = (A/%)/ d3z[(az4)2 t (a,@)’ + R(a&)’] . (2.9) 

Here 9 has unit length and either two or three components in the XY or Heisenberg case. 
As before, R is the ratio of inter-chain (or plane) coupling to in-chain (or plane) coupling. 
A is the ultraviolet cut-off; i.e. the field, g5 has Fourier modes with lkil < A. (We cut off 
the momentum inside a cube.) The factor of A is inserted to make the three-dimensional 
coupling constant g dimensionIess, as is usually done in formulating the 3D renormalization- 
group (RG) equations. 

Note that the only trace of the quasi-two-dimensionality is the anisotropy in the (a4)* 
terms. We can get rid of this by a rescaling of z by a factor of a, that is, we define a 
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new length coordinate, z‘ t / f i .   in momentum space, we define a new 3-component 
of momentum, k; = &k3. The action now looks completely three-dimensional except 
that the cut-off is no longer a 3D cube but a squat box of area A’ and height &A. To 
complete the elimination of the anisotropy 6om the action, we reduce the length and width 
of the box to f i A  also, by integrating out higher momentum modes, the standard RG 
procedure. Because the inter-chain coupling is so weak, this may essentially be done using 
the ZD RG equations; in  momentum space, (k;)’ is so small (due to the small cut-off) that 
we consider the planes to be essentially decoupled until we have lowered the 2D cut-off 
down to approximately &A. The value of the 2D effective coupling, when the cut-off has 
been reduced to f i A ,  then acts as the initial condition for further RG calculations: as we 
lower the cut-off still further we should use the isotropic 3D RG equations using &(&A) 
as the initial value. In the limit R + 0, the 2D coupling flows to its zero-cut-off fixed point, 
gz(0). See figure 2 for a sketch of one possible flow diagram. 

In both XY. and Heisenberg cases, the 30 system has ordered and disordered phases, 
separated by some critical coupling g,. (For g e g, the system is ordered.) Thus, whether 
or not the system orders for arbitrarily small R is determined by whether or not gZ(0) < gc. 
In the case of Heisenberg symmetry with no topological term, gz(0) is naively infinite, so the 
3D system i s  in the disordered phase for sufficiently small R. From another point of view, the 
2D system develops a finite correlation length, 8 ,  as we reduce the cut-off. For sufficiently 
small R, &A < 116.  then furthe; renormalization using the 3D RG equations cannot 
eliminate this finite correlation length. In the XY case gz(0) is basically the renormalized 
dimensionless temperature. It has a finite value along the Kosterliu-Thouless (KT) critical 
line, gz(0) e gKT. The important question is whether or not gKT < g,. If it is, then an 
arbitrarily weak inter-plane coupling leads to order for all T e TKT. In the other case, 
if g, < gKT, then there will be some special temperature, T, e TKT, such that below this 
temperature an arbitrarily weak inter-plane coupling leads to LRO but above this temperature 
there is a minimum inter-plane coupling necessary for LRO. 

Numerical simulations of the classical layered XY model indicate that gm < g, [6]. In 
this case the present approach predicts a critical coupling, g,(R), for weakly coupled planes, 
slightly above gKT. This can be estimated as the bare coupling for which the renormalized 
coupling at scale &A, g2(&A) g,. Using the 2D Kosterlitz renormalization-group 
equations this gives 

gc(R) - gKT l/(ln R)’ (2.10) 

in agreement with estimates based on plane mean-field theory 161 and another approach 
[7.8] somewhat closer in spirit to the present one. 

Now let us consider the half-integer spin quantum Heisenberg chain [9]. The two- 
dimensional a-model action now has an extra topological term added to it, with topological 
angle r. This angle itself does not renormalize, for symmetry reasons, but it has a crucial 
effect on the renormalization of gz. There is now a finite coupling critical point, gz(O), 
shown in figure 2. Note that the gz = 0 Nee1 fixed point is unstable, as required by the 
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quantum version of the Mermin-Wagner theorem. The gZ(0) critical point exhibits quasi- 
long-range order, i.e. power-law decay of spin correlations. The strong coupling phase 
is spontaneously dimerized; it can be reached with a sufficiently strong antiferromagnetic 
second nearest-neighbour coupling. The three-dimensional RG flows are expected to be 
the same for both integer and half-integer spin. The disordered phase is expected to be 
different for half-integer, odd integer or even integer spin due to the presence of a Berry's 
phase topological term [lo]. However, the value of this term (that is, whether the spin is 
half-integer, odd integer or even integer) is not expected to influence the existence of the 
order-disorder transition or, presumably, the universality class of this transition. We assume 
the only important effect of the topological terms is to produce a finite gz(0) critical point 
in two dimensions, as shown in figure 2. The situation is then similar to the classical XY 
case. Whether or not a disordered phase occurs for weak interchain coupling depends on 
whether or not gz(0) z g,. 

Let us contrast this approach to either of those discussed above, in sections 2.1 and 2.2. 
First consider the calculation of the breakdown of the N6el state in lowest-order spin-wave 
theory. This can be regarded as the above calculation of the renormalization of the 2D 
coupling, using only the lowest-order ZD RG equations. For large S we begin with a very 
small bare coupling. However, the lowest-order RG equations always break down for small 
enough R. Furthermore, these equations do not distinguish integer and half-integer S. In 
o-model language, the lowest-order RG is independent of the topological term. Actually the 
RG equations are independent of it to all orders in g; its effects are exponentially small in g. 
Nonetheless, for small enough R we always renormalize into the regime where these non- 
perturbative contributions are important. Blind use of the lowest order equations essentially 
leads to the conclusion that gz(0) is infinite and hence that the system is disordered at small 
enough R. 

On the other hand consider the standard mean-field argument [5 ] .  Because the 2D 
susceptibility is divergent along the whole KT critical line, or in the Heisenberg case with a 
topological term, it predicts LRO in all these cases. We argue that in order to go beyond a 
mean-field treatment one should consider not the ZD susceptibility but rather the renormalized 
2D effective coupling. Naively if the 2D susceptibility is infinite, the 2D effective coupling 
is zero. But in fact, this is not actually the case. Since the 2D effective coupling is finite at 
zero cut-off we must consider whether or not it is beIow g,, leading to the above conclusion. 

It was suggested recently by Parola et al 141 that, for R less than a finite R,, the long 
wavelength behaviour 'can be interpreted in terms of decoupled one-dimensional chains,' 
The implausibility of this proposal can be seen by considering a finite number of chains. In 
this case, we can analyse the scaling behaviour entirely in terms of the (1 + 1)-dimensional 
renormalization group. The inter-chain coupling, of dimension 1, is relevant. We might 
then naively expect from standard scaling arguments that for two chains there should be 
a gap, proportional to R (up to logarithms). The existence of a gap in this case has been 
shown numerically [ l l ,  121. In the case of three chains, White et a1 [12] found that the 
gap appears to vanish and this has been argued to be the case for any odd number of 
chains. However, this does not necessarily mean that the system asymptotically behaves 
like decoupled chains. Indeed, it seems more likely that the low-energy states would be 
those of a single S = f chain. This assertion is motivated by the behaviour of a single spin 
S chain as a function of S. For integer S one expects a gap while for half-integer S one 
expects universal gapless behaviour which is independent of S (i.e. always in the free boson 
or k = 1 Wess-Zumino-Witten universality class). For half-integer S the density of low- 
lying excitations (after scaling out the spin-wave velocity) does not increase with increasing 
S. We may expect similar behaviour for 2s coupled spin-; chains: inter-chain coupling is 
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relevant and the system scales away from decoupled chains to the single chain fixed point 
with fewer gapless degrees of freedom. Note that in this case, the number of low-lying 
degrees of freedom does not scale with the area of the system but only with the length. It 
is, of course, possible that, as the number of chains is increased, the gap to other excitations 
decreases and asymptotically approaches zero as the number of chains goes to bo. Indeed, 
this must happen if the a?-chain system N6el orders. However, it then seems unlikely that 
the low-lying excitations would be those of decoupled chains. We rather expect that, if a 
disordered phase exists at small R, it has a genuinely two-dimensional nature. Previous 
work on the isotropic S = 4 square lattice Heisenberg antiferromagnet with next-nearest 
neighbour interactions suggests that a dimer-ordered ground state is the most likely to occur 
in a magnetically disordered phase [13]. However, other possibilities with or without a gap 
cannot be ruled out. 

Actually, the result of our reasoning is pretty uninformative. It is simply that we cannot 
tell from RG arguments whether or not the system orders for arbitrarily weak inter-plane 
coupling, in cases where the ZD system has an infinite correlation length. We might expect 
that the existence or non-existence of a critical R is not universal. Different realizations of 
the model may have different values ofg, or &(O), since critical temperatures (or couplings) 
are, in general, not universal. For instance, a different phase diagram might ensue if the 
chains are coupled with a first and second nearest-neighbour inter-chain coupling, both 
proportional to R. It would thus seem that the question of the existence of a disordered 
phase for finite R in a particular model must be answered by numerical work. 

3. Series calculations and analyses 

We now turn to numerical studies of weakly coupled, S = Heisenberg chains, and, in 
particular, the anisotropic two-dimensional lattice of figure 1 and (1.1). It is obviously not 
possible for any numerical calculation to distinguish between J;  = 0, i.e. the persistence 
of N6el order for arbitrarily small interchain couplings, and a sufficiently small but positive 
J;. Provided that there is no strong evidence for any particular non-zero value of J;, the 
best one can do is argue that numerical data are consistent with a vanishing J; and offer 
reasonable upper bounds on its value. 

Our numerical studies consist of a variety of zero-temperature series expansions 
(i.e. RayleighSchrOdinger perturbation theory) following the cluster-expansion techniques 
described in [ 141. Series expansions have several advantages over finite-size calculations 
in two-dimensional lattice quantum many-body problems. There is no need to worry about 
cluster-shape effects-which should be of particular concern in anisotropic models such 
as the one of present interest. Given comparable computing power, series calculations 
can account for much further-range correlations than would be possible in an exact 
diagonalization calculation (see the discussion in section 5 of [14]). Finally, the fact that the 
series calculations do  not directly study the model of interest, but rather yields results on a 
one- (or more) parameter family of models, may allow for further informative comparisons 
with approximate analytic calculations. 

Expansions were carried out about both Ising and dimer Hamiltonians. The calculations 
and analyses will be described in detail below; here let us preview the results. The results 
of both types of expansions are consistent with J; = 0. We believe that J,! is unlikely 
to exceed 0.02 J,. This upper bound is not much smaller than the lowest-order spin-wave 
estimate (and hence by itself cannot be taken as very strong evidence that spin-wave theory 
is qualitatively wrong); however it is notably less than the value 0.1 Jz suggested by Parola 
et al [4] based on exact diagonalization of clusters with up to 32 spins. In addition, the 
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king expansions yield estimates for the staggered magnetization and the correlation-length 
anisotropy which are in excellent agreement with spin-wave theory for J y / J x  down to 0.1. 
Finally, the dimer expansions appear to be consistent with the chain mean-field theory of 
section 2.2 at small J y >  and thus support the proposition that J; = 0. However, that 
conclusion must be tempered by comparison of the dimer expansions for a plane of chains 
with the conesponding calculations for a pair of chains. 

3.1. k i n g  expansions 

In order to discuss the king expansions, we consider a generalization of the coupled-chain 
Hamiltonian (1.1) in which king anisotropy is inwoduced, namely 
H = J,[S;S: +a(S:S? + SrS;)] + Jy[SfSf + L Y ( S : S ~  +S;’S;)]. (3.1) 

P, -,,=e, ,,-,,=e, 

Henceforth we choose units of energy so that Jx = 1 (and J y  = R ) .  Physical quantities 
are expanded in powers of a;  we have calculated the ground-state energy E,, the sublattice 
magnetization M = (S,), and the correlation length anisotropy (ey/&)’ which is given 
explicitly by 

where the subscript c refers to connected correlations 
{s;S;), = (S,S;) - (S; ) (S; ) .  

The energy and magnetization series were determined to order while the ( ~ y / & ) 2  
series were only calculated to order ( L Y ~ ) ~ .  Note that each value of J y  requires a separate 
calculation of the series; since it is not possible to present the complete series expansions in 
a compact format they are not displayed here, but are available as supplementary material. 
Here we discuss the analysis. 

The energy series were analysed by direct Pad6 approximants. The results of five 
different Pad6 approximants evaluated at ci = 1 are shown in figure 3. It is clear that they 
extrapolate smoothly between the one- and two-dimensional limits, that is to say between 
Jy = 0 and 1. This is consistent with the expansion being convergent up to LY = 1 for all 
J y  2 0, which is in turn consistent with J; = 0. However, this is quite weak evidence, as 
we will discuss i n  connection with the dimer expansions. Perhaps the results for E, could 
serve best as a touchstone for the quality of finite-size calculations. 

Figure 3. Pad6 appmximants for the ground-state energy, 
evaluated at o = 1. The symbols are appmximants 
to Ising series, while the lines (which a~ connecting 
points with J y  = 0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.75) 
are approximats to dimer series. 

-0.7 0.0 6 0.2 0.4 0.6 0.8 1.0 

JY 
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JY 

Figure 4. Pad6 approximans to (he king expansion 
for the sublattice magnetiwtion. evaluated x c = I 
following the change of vanbles described in the text. 
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0 

Figure 5. Pad6 appmximvlts to the king expansion for 
the conelatian length anisotropy, evaluated 81 U = 1. 

To analyse the magnetization series, we first make a change of variables originally 
introduced by Huse, 6 = 1 - (1 - which removes the square-root singularity at 
01 = 1 expected on the grounds of spin-wave theory. The results for five Pad& approximants 
evaluated at o( = 1 are s h o w  in figure 4. For Js > 0.2 the approximants are well converged 
and appear to be in good agreement with spin-wave theory. For J ,  < 0.2 the convergence 
is poor, but the approximants are suggestive of Niel order for all J ,  and with M vanishing 
as a small power of J,. Note that the chain mean-field theory implies M - J;” as Jy + 0. 
In any case, these data provide no evidence that M + 0 at any particular JyE > 0. 

The correlation length anisotropy series are short, however, this quantity is non-singular 
as LY + 1 and the Pad6 approximants evaluated at 01 = 1 are extremely consistent even 
down to very small J y :  see figure 5. For J ,  > 0.1 there is remarkable agreement between 
the series estimates and the spin-wave calculation presented by Parola eta[ [4]. For smaller 
J y ,  two of the three approximants indicate tS/& + 0 for Js between 0 and 0.02, and the 
other approximant is ill-behaved. These data are consistent with JyC = 0, but also with a 
small critical interchain coupling. 

3.2. Dimer expansions 

The dimer expansions are in the variable h for properties of the Hamiltonian H = Ho+hHl, 
where for Ho we take the columnar dimer Hamiltonian 

(3.4) 

with 2) the dimer covering of the square lattice shown in figure 6, and HI is the remainder 
of the couplings, so that h = 1 corresponds to the coupled-chain model of interest, namely 

Hi = Jx Si. Sj + J ,  Si. S j .  (3.5) 
F,-v,’E’:(ij)gD P, -7, =el 

The quantities for which we have obtained series expansions, to order h7 (which 
involves evaluation of 1041 graphs), include the ground-state energy Eg, moments of the 
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Figure 6. The columnar dimer covering U used for the - C--.--. dimer expansions: see (3.5). 

antiferromagnetic equal-time structure facto1 

M1 = C ( S 0 .  S,)n(r;) 
i 

(where n(vi)=l if ri lies on the same sublattice as PO, and is -1 otherwise), and the 
antiferromagnetic susceptibility x. 

It should be clear from the form of the Hamiltonian that all these quantities possess 
two-variable expansions, in powers of A and AJ,. Hence the coefficient of Am in any of 
these series can be expressed in terms of an order-m polynomial in J y ;  and calculations of 
the seventh-order series at eight values of J y  allows one to determine them at any Js by 
means of polynomial interpolation. 

Before considering the details of the dimer series analysis, let us look at the notions 
underlying this approach, and what we might expect to learn from it. Properties of the Ndel- 
ordered phase are inaccessible to the dimer expansions (in contrast to the king expansions); 
what they can provide are estimates of Ac(Jy ) ,  the smallest value of A for a given J y  at 
which the antiferromagnetic correlation length and susceptibility diverge. If one assumes the 
simplest possible phase diagrams in the Jy-A plane, sketched in figure 7, then AC(Jy) < 1 
implies that the uniformly coupled system (A = 1) exhibits N&l order for that value of Jy. 
Furthermore, one may compare the series estimates of A c ( J y )  with approximate analytic 
calculations for the critical line. 

Let us first briefly discuss the ground-state energy series. Direct Pad6 approximants 
allow for estimates of E g ( J y ,  A = 1) which are shown in figure 3. The approximants are 
consistent with each other-and with the values obtained from the king expansions for Jy 
as large as 0.4. This implies that the singularity in Eg at the critical line is very weak; the 
alternative, that A' > 1 for Jy  c 0.4, is ruled out by both the king expansions and the other 
dimer expansions. 

The terms of the MI, M,,, and x series are all positive and increasing with order in 
A. Thus one may estimate AC(J,) either by ratio analyses or inhomogeneous differential 
approximants (of which Dlog Pad6 approximants are a special case) [15]. 

The estimates of A C ( J y )  which result from consideration of M I  are poorly converged, 
so we will only discuss M,, and x .  The results for these two sets of series are presented in 
figure 8. Let us address what the various curves and points signify. First, six differential 
approximant estimates for AC(Js)  are presented for several values of J y ;  these particular 
approximants are chosen because they utilize all the terms in the series and they yield good 
estimates of A' at both Jy  = 0 and J y  = 1. The missing approximants at any Jy are either 
defective or (in one or two cases) off-scale. The approximants are reasonably consistent 
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Figure 7. Sketches of the simplest plausible phxe diagrams in the first quadrant of the Jy-A 
plane far the Hamiltonian (3.5) assuming that (a)  J; = 0. and (b) J i  > 0. Note that units of 
energy are chosen so that J, = 1. The phase diagrams must satisfy two contraints that follow 
from the invariance of correlation functions with respect to multiplication of the Hamiltonian by 
a constant: ( J y .  A) = (4. I) and (11% I )  lie in the same phase, and so must (a. b) and (ab, l ib). 
In both cases the hatched regions constitute the N6el ordered phase, which are surrounded by 
lines of critical points. The one-dimensional Heisenberg critical point at ( J y ,  A) = (0. I )  is 
indicated by the large dot. The entire righl boundaries of the plots, J y  = m. 0 c A c m, 
are also one-dimensional Heisenberg critical points. All other points are supposed to have only 
short-range correlations. 

1 .o , ,  , , 

0.9 

0.8 

0.7 

0.6 

0.5 Figure S. Estimated values of the critical h as il 
function of 3, for the coupled-chain model (3.5). From 

0.4 the x series, differential approximants displayed are 
P,4;  -11 (0). 13.2; 01 0, and 13.3; -11 (0); from 

0.3 the M,, series, p.4;  -11 (A), [3,3: -11 (v), and 
0.0 0.2 0.4 0.6 0.8 1.0 [4,2: - I ]  (D). See Ihe text for a discussion of the 

h. 

JY significance of the various curves. 

over the entire range of Jr. Second. the thin full and broken curves are the estimates of 
hC based on ratio analysis of the three highest-order terms in the x and M,, series. For a 
series E,, c,,h,, the ratios c,/c,,-I are plotted versus I / n  and pairwise linearly extrapolated 
to l / n  = 0; the intercepts yield estimates of l/hc based on three consecutive terms of the 
series. The x ratio curve lies close to the differential approximants, which reflects the fact 
that the x series are extremely well behaved. The ratio plot (corresponding to J y  = 1) in 
figure 2 of [14] provides further evidence that the antiferromagnetic susceptibility series is 
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better behaved than other dimer expansions. Both the ratio and differential approximant 
analyses suggest that Ac(Jy)  e 1 for all J,, > 0, and hence that there is no magnetically 
disordered phase along the line A = 1. 

Third, two mean-field estimates of Ae(J,) are presented in the figure. The chain curve is 
based on 'dimer mean-field theory,' [16] that is, the zeroth- and first-order terms in x ( A )  are 
used to estimate A,. (This is equivalent to considering a single dimer subject to a staggered 
field which is determined, self-consistently, by its staggered magnetization.) That result is 
A;,, = l / ( l  + U,), and it has the remarkable (and accidental) feature that it yields the 
exact Ac when Ju = 0. The thin full curve is based on the chain mean-field theory discussed 
in section 2.2. The values of x ,  (A) (the antiferromagnetic susceptibility for a single chain), 
which are the essential input into that mean-field theory, were obtained by integrating a 
differential approximant to the seventh-order series presented in [14]. The thick full curve 
ends at Jy FZ 0.02 because the numerical estimates of x(A) are not reliable for A arbitrarily 
close to I .  Over most of the range of Jy  plotted, the dimer and chain mean-field theories 
give quite close values of AC. The agreement is somewhat better than one would expect: 
in both cases the leading behaviour of IC at large Jy is 1/2Jy, but the next-order terms 
are -3145; and -1145; for the chain and dimer mean-field theories, respectively, and at 
J y  = 1 the difference is hardly negligible! At small J y  the chain mean-field theory is clearly 
in better agreement with the series exizapolations than the dimer mean-field theory. 

To briefly recapitulate, the dimer series for the two-dimensional lattice of coupled chains 
are entirely consistent with J; = 0. However, there is reason to doubt the strength of this 
conclusion. Since A'(0) = 1 and hC(l) ~s 0.54, it would be entirely natural to conclude 
from too-short series that A c ( J y )  interpolates smoothly between these two endpoints, even 
if the correct result is that AC does not exist for 0 e Jy  e J; as would be the case if 
the scenario of figure 7 ( b )  were to hold. As a partial test of the reliability of the series 
estimates of Ac(Jy) ,  we have considered the problem of two coupled chains by the dimer 
series expansion method. The chains were taken to lie parallel to the bonds in the columnar 
dimer configuration. The only differences between these calculations and those preceding 
are the set of connected clusters (and their lattice constants), and that we will present results 
for M,, rather than M,r.  (In fact one can use Mxx to estimate A c ( J y )  for the plane of chains 
as well; the differences between the estimates based on Mxx and M,p are insignificant for 
the J y  of interest.) 

For two chains the only critical point in the A-Jy plane is (A = 1, Jy  = 0) [17]. 
Estimates of Ac(J,) coming from inhomogeneous differential approximants to the x and 
M,, series for two chains are displayed in figure 9, on the same scale as in figure 8 for 
ease of comparison. The thick full and thin chain curves are the chain and dimer mean-field 
results, respectively, for fwo chains. (One obtains these from the mean-field results for 
planes of chains by the substitution ZJ,  + J y . )  Several points are evident upon inspection, 
First, even at very small Jy  one can distinguish between the estimates of A' from the 
differential approximants for the plane of chains and for two chains; they seem to approach 
zero with different slopes, on these plots. This could be taken as further evidence that, for 
the plane of chains, J; is extremely small if not vanishing. 

However, for J y  5 0.2, where the approximants are well converged, one might conclude 
that there are critical points at A c 1, contrary to the known behaviour of coupled pairs 
of chains. We believe this line segment of 'pseudo-critical' points reflects the existence of 
local maxima in the correlation length at A Es 1 for fixed, small J,, where the correlation 
length at these maxima exceeds the typical cluster length in the seventh-order calculation 
(which is roughly 10). That such pseudo-nitical points should exist is entirely plausible: 
numerical studies for pairs of finite chains [4,11] find that the gap initially decreases as 
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1 .o 

0.9 

Figure 9. The symbols correspond to stimates of lhe 
critical A for W O  chains, corresponding to the same 

0.0 0.2 0.4 0.6 0.8 1.0 approximants as the preceding figure (but for M,, 
rather Lhan M,,), The curves are discussed in the text. 

0.3 0.4 i 
JY 

J y  is increased from zero. What is somewhat disturbing is that, for Jy  5 0.1, the two- 
chain approximants are as consistent with chain mean-field theory (for two chains) as the 
plane-of-chain approximants are with chain mean-field theory (for a plane of chains). Thus 
it is conceivable that for the plane of chains, the values of hC indicated by the series at 
sufficiently small J y  are pseudo-critical points, rather than true critical points, as well. 

To conclude, the problem of coupled chains at small Jy poses significant challenges to 
numerical shldies. Although the series expansions are consistent with J; = 0 they do not 
rule out a small but positive J;. If the disordered phase exists, the correlation length along 
the x-direction is probably large throughout that phase, and the gap is small everywhere. 
A potentially fruitful avenue for future studies would be the consideration of models which 
include further-neighbour couplings; suitable models would have larger critical interchain 
couplings within spin-wave theory than the simplest coupled Heisenberg chain model studied 
here. 
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